|
A chi-squared test, also referred to as test (or chi-square test), is any statistical hypothesis test in which the sampling distribution of the test statistic is a chi-square distribution when the null hypothesis is true. Chi-squared tests are often constructed from a sum of squared errors, or through the sample variance. Test statistics that follow a chi-squared distribution arise from an assumption of independent normally distributed data, which is valid in many cases due to the central limit theorem. A chi-squared test can then be used to reject the hypothesis that the data are independent. Also considered a chi-square test is a test in which this is ''asymptotically'' true, meaning that the sampling distribution (if the null hypothesis is true) can be made to approximate a chi-square distribution as closely as desired by making the sample size large enough. The chi-squared test is used to determine whether there is a significant difference between the expected frequencies and the observed frequencies in one or more categories. Does the number of individuals or objects that fall in each category differ significantly from the number you would expect? Is this difference between the expected and observed due to sampling variation, or is it a real difference? == Examples of chi-square tests with samples== One test statistic that follows a chi-square distribution exactly is the test that the variance of a normally distributed population has a given value based on a sample variance. Such tests are uncommon in practice because the true variance of the population is usually unknown. However, there are several statistical tests where the chi-square distribution is approximately valid: 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Chi-squared test」の詳細全文を読む スポンサード リンク
|